更新于 

1/(sinx+cosx) 的不定积分

关键在于变换三角函数形式,将其转化为已知积分的函数。包括但不限于,换元、辅助角、半角甚至复数。

辅助角公式换元

令:

I(a,b)=1asinx+bcosxdxI(a,b)=\int \frac{1}{a\sin x+b\cos x}dx

由辅助角公式:

asinx+bcosx=a2+b2(aa2+b2sinx+ba2+b2cosx)a\sin x+b\cos x=\sqrt{ a^{2}+b^{2} }\bigg( \frac{a}{ a^{2}+b^{2} }\sin x+\frac{b}{ a^{2}+b^{2} }\cos x \bigg)

设:aa2+b2=cosα,ba2+b2=sinα\cfrac{a}{a^{2}+b^{2}}=\cos\alpha,\cfrac{b}{a^{2}+b^{2}}=\sin\alphaasinx+bcosx=a2+b2sin(x+α)a\sin x+b\cos x=\sqrt{a^{2}+b^{2}}\sin{(x+\alpha)},其中α=arctanab\alpha=\arctan{\cfrac{a}{b}}
则有:

I(a,b)=1a2+b21sin(x+α)dx=1a2+b2csc(x+α)d(x+α)I(a,b)=\frac{1}{a^{2}+b^{2}}\int \frac{1}{\sin{(x+\alpha)}}dx=\frac{1}{a^{2}+b^{2}}\int \csc{(x+\alpha)}d(x+\alpha)

熟知:

cscudu=sinusin2udu=d(cosu)1cos2u=12(11cosu+11+cosu)d(cosu)=12[ln(1cosu)+ln(1+cosu)+C]=ln1cosu1+cosu+C=ln2sinu22cosu2+C=lntanu2+C\begin{aligned} \int \csc udu &= \int\cfrac{\sin u}{\sin^2 u}du=-\int\cfrac{d(\cos u)}{1-\cos^2 u}\\ &= -\frac{1}{2}\int(\cfrac{1}{1-\cos u}+\cfrac{1}{1+\cos u})d(\cos u)\\ &= -\frac{1}{2}[-\ln(1-\cos u)+\ln(1+\cos u)+C]\\ &= \ln\left|\sqrt{\frac{1-\cos u}{1+\cos u}}\right|+C=\ln\left|\sqrt{\frac{2\sin^ \frac{u}{2}}{2\cos^ \frac{u}{2}}}\right|+C\\ &= \ln\left|\tan\frac{u}{2}\right|+C \end{aligned}

故:

(a,b)=1a2+b2tanx+α2dx(a,b)=\frac{1}{\sqrt{ a^{2}+b^{2}}}\int\left|\tan\frac{x+\alpha}{2} \right| dx

其中α=arctanba\alpha = \arctan\cfrac{b}{a}
则有:

1sinx+cosxdx=I(1,1)=12lntanx+π42\int\frac{1}{\sin x+\cos x}dx=I(1,1)=\frac{1}{\sqrt{2}}\ln\left|\tan\frac{x+\frac{\pi}{4}}{2}\right|